Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.838
Filtrar
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38640440

RESUMO

Fomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed. Here we used metagenomics and metatranscriptomics to analyse the microbial community associated with healthy living and decomposing F. fomentarius fruiting bodies to assess the functional potential of the fruiting body-associated microbiome and to determine the main players involved in fruiting body decomposition. F. fomentarius sequences in the metagenomes were replaced by bacterial sequences as the fruiting body decomposed. Most CAZymes expressed in decomposing fruiting bodies targeted components of the fungal cell wall with almost all chitin-targeting sequences, plus a high proportion of beta-glucan-targeting sequences, belonging to Arthropoda. We suggest that decomposing fruiting bodies of F. fomentarius represent a habitat rich in bacteria, while its decomposition is primarily driven by Arthropoda. Decomposing fruiting bodies thus represent a specific habitat supporting both microorganisms and microfauna.


Assuntos
Artrópodes , Ascomicetos , Coriolaceae , Microbiota , Animais , Microbiota/genética , Carpóforos , Bactérias/genética
2.
Carbohydr Res ; 538: 109099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574411

RESUMO

Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 â†’ 3)-linked ß-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 â†’ 3)-ß-glucan, (1 â†’ 3)-α-glucan, and (1 â†’ 4)-α-mannan; while GLC-3 is a branched ß-glucan with a (1 â†’ 4)-linked main chain, which is branched at O-3 or O-6 by (1 â†’ 3)- or (1 â†’ 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.


Assuntos
Ascomicetos , Reishi , beta-Glucanas , Glucanos/química , Reishi/química , Polissacarídeos/química , beta-Glucanas/química , Carpóforos/química , Água/análise
3.
J Agric Food Chem ; 72(10): 5416-5427, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477043

RESUMO

Schizophyllum commune, a fleshy fungus, is an important medicinal and food-homologous mushroom in China. In this work, eight undescribed sesquiterpenes schizomycins A-H (1-8) and one new meroterpenoid schizomycin I (9) together with three known analogues (10-12) were isolated from fruiting bodies of S. commune. Their planar structures were established by extensive spectroscopic and mass spectrometric data. The absolute configurations of compounds 1, 2, and 4 were determined by single crystal X-ray diffraction, and compounds 3 and 5-9 were confirmed by electronic circular dichroism calculations. Anti-inflammatory activities of all isolated compounds were evaluated for their inhibitory effects on IL-6 and IL-1ß production in RAW 264.7 cells. Among them, compound 7 exhibited significant IL-6 inhibitory activity with an IC50 value of 3.6 µM. The results of molecular docking showed that compound 7 interacts with amino acid residues (Gly117, Lys118, Asp120, Thr166, and Try168) of the IL-6 receptor protein through hydrogen bonding.


Assuntos
Ascomicetos , Schizophyllum , Sesquiterpenos , Schizophyllum/química , Schizophyllum/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Dicroísmo Circular , Carpóforos , Sesquiterpenos/metabolismo , Estrutura Molecular
4.
Int J Biol Macromol ; 263(Pt 2): 130610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447851

RESUMO

Fruiting body development in macrofungi is an intensive research subject. In this study, high-quality genomes were assembled for two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain WX1, and variations in L. edodes genomes were analyzed. Specifically, differential gene expression and allele-specific expression (ASE) were analyzed using the two monokaryotic genomes and transcriptome data from four different stages of fruiting body development in WX1. Results revealed that after aeration, mycelia sensed cell wall stress, pheromones, and a decrease in CO2 concentration, leading to up-regulated expression in genes related to cell adhesion, cell wall remodeling, proteolysis, and lipid metabolism, which may promote primordium differentiation. Aquaporin genes and those related to proteolysis, mitosis, lipid, and carbohydrate metabolism may play important roles in primordium development, while genes related to tissue differentiation and sexual reproduction were active in fruiting body. Several essential genes for fruiting body development were allele-specifically expressed and the two nuclear types could synergistically regulate fruiting body development by dominantly expressing genes with different functions. ASE was probably induced by long terminal repeat-retrotransposons. Findings here contribute to the further understanding of the mechanism of fruiting body development in macrofungi.


Assuntos
Cogumelos Shiitake , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Reprodução , Carpóforos/metabolismo
5.
Microbiol Res ; 283: 127695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554651

RESUMO

Cap expansion in agaricoid mushroom species is an important event for sexual reproduction because meiosis occurs in basidia under the cap, and basidiospores can be released by opening the cap. However, molecular mechanisms underlying cap expansion in basidiomycetes remain poorly understood. We aimed to elucidate the molecular mechanisms of cap expansion in basidiomycetes by analyzing the unique cap-expansionless UV mutant #13 (exp2-1) in Coprinopsis cinerea. Linkage analysis and consequent genome sequence analysis revealed that the gene responsible for the mutant phenotypes encodes a putative transcription factor with two C2H2 zinc finger motifs. The mutant that was genome-edited to lack exp2 exhibited an expansionless phenotype. Some of the genes encoding cell wall degradation-related enzymes showed decreased expression during cap expansion and autolysis in the exp2 UV and genome-edited mutant. The exp2 gene is widely conserved in Agaricomycetes, suggesting that Exp2 homologs regulate fruiting body maturation in Agaricomycetes, especially cap expansion in Agaricoid-type mushroom-forming fungi. Therefore, exp2 homologs could be a target for mushroom breeding to maintain shape after harvest for some cultivating mushrooms, presenting a promising avenue for further research in breeding techniques.


Assuntos
Agaricales , Basidiomycota , Carpóforos/genética , Agaricales/genética , Dedos de Zinco/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
6.
Arch Microbiol ; 206(3): 97, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349544

RESUMO

Cordyceps militaris is a well-known medicinal mushroom in Asian countries. This edible fungus has been widely exploited for traditional medicine and functional food production. C. militaris is a heterothallic fungus that requires both the mating-type loci, MAT1-1 and MAT1-2, for fruiting body formation. However, recent studies also indicated two groups of C. militaris, including monokaryotic strains carrying only MAT1-1 in their genomes and heterokaryotic strains harboring both MAT1-1 and MAT1-2. These strain groups are able to produce fruiting bodies under suitable cultivating conditions. In previous work, we showed that monokaryotic strains are more stable than heterokaryotic strains in fruiting body formation through successive culturing generations. In this study, we report a high cordycepin-producing monokaryotic C. militaris strain (HL8) collected in Vietnam. This strain could form normal fruiting bodies with high biological efficiency and contain a cordycepin content of 14.43 mg/g lyophilized fruiting body biomass. The ethanol extraction of the HL8 fruiting bodies resulted in a crude extract with a cordycepin content of 69.15 mg/g. Assays of cytotoxic activity on six human cancer cell lines showed that the extract inhibited the growth of all these cell lines with the IC50 values of 6.41-11.51 µg/mL. Notably, the extract significantly reduced cell proliferation and promoted apoptosis of breast cancer cells. Furthermore, the extract also exhibited strong antifungal activity against Malassezia skin yeasts and the citrus postharvest pathogen Penicillium digitatum. Our work provides a promising monokaryotic C. militaris strain as a bioresource for medicine, cosmetics, and fruit preservation.


Assuntos
Antineoplásicos , Cordyceps , Neoplasias , Penicillium , Humanos , Penicillium/genética , Carpóforos
7.
Arch Pharm Res ; 47(3): 272-287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416389

RESUMO

Gymnopilus orientispectabilis, also known as "big laughter mushroom," is a hallucinogenic poisonous mushroom that causes excessive laughter upon ingestion. From the fruiting bodies of G. orientispectabilis, eight lanostane-type triterpenoids (1-8), including seven novel compounds: gymnojunols A-G (2-8), were isolated. The chemical structures of these new compounds (2-8) were determined by analyzing their 1D and 2D NMR spectra and HR-EISMS, and their absolute configurations were unambiguously assigned by quantum chemical ECD calculations and a computational method coupled with a statistical procedure (DP4+). Upon evaluating autophagic activity, compounds 2, 6, and 7 increased LC3B-II levels in HeLa cells to a similar extent as bafilomycin, an autophagy inhibitor. In contrast, compound 8 decreased the levels of both LC3B-I and LC3B-II, and a similar effect was observed following treatment with rapamycin, an autophagy inducer. Our findings provide experimental evidence for new potential autophagy modulators in the hallucinogenic poisonous mushroom G. orientispectabilis.


Assuntos
Agaricales , Venenos , Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/química , Venenos/análise , Estrutura Molecular , Células HeLa , Agaricales/química , Carpóforos/química
8.
mSystems ; 9(3): e0120823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334416

RESUMO

The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE: Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Carpóforos/genética , Filogenia , Proteínas Fúngicas/genética , Agaricales/genética , Basidiomycota/metabolismo , Ascomicetos/metabolismo
9.
Sci Rep ; 14(1): 2231, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278834

RESUMO

Phenotypic degeneration in Cordyceps militaris poses a significant concern for producers, yet the mechanisms underlying this phenomenon remain elusive. To address this concern, we isolated two strains that differ in their abilities to form fruiting bodies. Our observations revealed that the degenerated strain lost the capacity to develop fruiting bodies, exhibited limited radial expansion, increased spore density, and elevated intracellular glycerol levels. Transcriptome reanalysis uncovered dysregulation of genes involved in the MAPK signaling pathway in the degenerate strain. Our RT-qPCR results demonstrated reduced expression of sexual development genes, along with upregulation of genes involved in asexual sporulation, glycerol synthesis, and MAPK regulation, when compared to the wild-type strain. Additionally, we discovered that osmotic stress reduced radial growth but increased conidia sporulation and glycerol accumulation in all strains. Furthermore, hyperosmotic stress inhibited fruiting body formation in all neutralized strains. These findings indicate dysregulation of the MAPK signaling pathway, the possibility of the activation of the high-osmolarity glycerol and spore formation modules, as well as the downregulation of the pheromone response and filamentous growth cascades in the degenerate strain. Overall, our study sheds light on the mechanisms underlying Cordyceps militaris degeneration and identifies potential targets for improving cultivation practices.


Assuntos
Cordyceps , Transcriptoma , Pressão Osmótica , Glicerol/metabolismo , Esporos Fúngicos/genética , Carpóforos/metabolismo
10.
J Agric Food Chem ; 72(2): 1361-1375, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166381

RESUMO

Light affects the morphology and physiology of Pleurotus ostreatus. However, the underlying molecular mechanism of this effect remains unclear. In this study, a label-free comparative proteomic analysis was conducted to investigate the global protein expression profile of the mycelia and fruiting bodies of P. ostreatus PH11 growing under four different light quality treatments. Among all the 2234 P. ostreatus proteins, 1349 were quantifiable under all tested conditions. A total of 1100 differentially expressed proteins were identified by comparing the light group data with those of the darkness group. GO and KEGG enrichment analyses indicated that the oxidative phosphorylation, proteasome, and mRNA surveillance pathways were the most related pathways under the light condition. qRT-PCR verified that the expression of the white collar 1 protein was significantly enhanced under white light. Additionally, glutamine synthetase and aldehyde dehydrogenase played important roles during light exposure. This study provides valuable insight into the P. ostreatus light response mechanism, which will lay the foundation for improved cultivation.


Assuntos
Pleurotus , Carpóforos , Micélio , Proteômica
11.
Curr Microbiol ; 81(3): 79, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281219

RESUMO

Three new species of Laccaria infundibuliformis, L. pallidus, and L. darjeelingensis, collected from Darjeeling, India, are described based on morphological and molecular evidence. Laccaria infundibuliformis is characterized by its small infundibuliform basidiocarps, and echinulate basidiospores with spines up to 1.36 µm long. Laccaria pallidus is characterized by medium-sized greyish-red basidiocarps, and echinulate basidiospores with spines up to 1.9 µm long. Laccaria darjeelingensis is characterized by dull red basidiocarps, and echinulate basidiospores with spines up to 1.27 µm long. Altogether, the study shows that these three Laccaria species are previously unknown to science.


Assuntos
Agaricales , Basidiomycota , Laccaria , Carpóforos , Esporos Fúngicos , Índia
12.
J Ethnopharmacol ; 321: 117546, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061441

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Laetiporus sulphureus has long been used as an edible and medicinal mushroom in Asia, America, and Europe. Its fruiting bodies are widely used in folk medicine for treating cancer, gastric diseases, cough, and rheumatism. Polysaccharides are an important bioactive component of mushrooms. In nature, sulfated polysaccharides have never been reported in mushrooms. Furthermore, there is no information on differences in physicochemical properties and anti-breast cancer activities between polysaccharides (PS) and sulfated polysaccharides (SPS) of L. sulphureus. AIM OF THE STUDY: This study aimed to investigate the physicochemical properties of PS and SPS isolated from fruiting bodies of L. sulphureus and examine their anti-proliferative effects and mechanism(s) of action on MDA-MB-231 breast cancer cells. METHODS: Polysaccharides (PS) were isolated using hot water and ethanol precipitation methods. Sulfated polysaccharides (SPS) were isolated by the papain-assisted hydrolysis method. Physicochemical properties comprising sugar, protein, uronic acid, and sulfate contents, and molecular weight, monosaccharide composition, and structural conformation were analyzed on PS and SPS. In the anti-cancer study, a triple-negative breast cancer cell line (MDA-MB-231) and a normal human mammary epithelial cell line (H184B5F5/M10) were used to evaluate the anti-proliferative activity of PS and SPS, and their mechanism(s) of action. RESULTS: The results showed that SPS, which had higher sulfate and protein contents and diversified monosaccharide composition, exhibited more potent anti-proliferative activity against MDA-MB-231 cells than PS. Furthermore, it had a selective cytotoxic effect on breast cancer cells but not the normal cells. SPS induced cell cycle arrest at G0/G1 phase via down-regulating CDK4 and cyclin D1 and up-regulating p21 protein expression. Breast cancer cell apoptosis was not observed until 72 h after SPS treatment. In addition, SPS also markedly inhibited breast cancer cell migration. CONCLUSION: This study demonstrates that SPS exhibited selective cytotoxicity and was more potent than PS in inhibiting MDA-MB-231 cell proliferation. The contents of sulfate and protein, and monosaccharide composition could be the main factors affecting the anti-breast cancer activity of L. sulphureus SPS.


Assuntos
Agaricales , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Sulfatos/análise , Pontos de Checagem do Ciclo Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/análise , Apoptose , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carpóforos/química , Movimento Celular , Monossacarídeos/análise , Linhagem Celular Tumoral , Ciclo Celular
13.
Phytochemistry ; 218: 113952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096963

RESUMO

Lanostane-type triterpenoids are the main characteristic constituents in Ganoderma mushrooms. Phytochemical analysis on the ethanol extract of the fruiting bodies of Ganoderma amboinense led to isolation and identification of twelve previously undescribed lanostane triterpenoids (1-12). Their chemical structures were determined by HR-ESI-MS, IR, and NMR spectroscopic analysis, NMR calculation, as well as X-ray crystallography. All isolates were evaluated for the α-glucosidase inhibitory and anti-inflammatory activities. Compounds 1, 5, 6, and 11 showed significant α-glucosidase inhibitory activity with IC50 values ranging from 33.5 µM to 96.0 µM. Moreover, compound 12 showed anti-inflammatory activity with IC50 value of 21.7 ± 2.1 µM.


Assuntos
Ganoderma , Triterpenos , Triterpenos/farmacologia , Triterpenos/química , Estrutura Molecular , Ganoderma/química , alfa-Glucosidases , Carpóforos/química , Esteroides/análise , Anti-Inflamatórios
14.
Int J Med Mushrooms ; 25(12): 65-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37947065

RESUMO

The optimal cultivation conditions and chemical components of Poria cocos fruiting bodies were examined by employing the single factor and response surface methods to screen for optimal conditions for artificial cultivation. The differences in chemical composition among the fruiting bodies, fermented mycelium, and sclerotia of P. cocos were compared using UV spectrophotometry and high-performance liquid chromatography (HPLC). The optimal growth conditions for P. cocos fruiting bodies were 28.5°C temperature, 60% light intensity, and 2.5 g pine sawdust, which resulted in the production of numerous basidiocarps and basidiospores under microscopic examination. Polysaccharides, triterpenoids, and other main active components of P. cocos were found in the fruiting bodies, sclerotia, and fermented mycelium. The triterpenoid components of the fruiting bodies were consistent with those of the sclerotia. The content of pachymic acid in the fruiting bodies was significantly higher than that in the sclerotia, with a value of 33.37 ± 0.1902 mg/g. These findings provide novel insights into the sexual breeding and comprehensive development and utilization of P. cocos.


Assuntos
Wolfiporia , Wolfiporia/química , Cromatografia Gasosa , Micélio/química , Cromatografia Líquida de Alta Pressão , Carpóforos
15.
Sci Rep ; 13(1): 20265, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985810

RESUMO

Antrodia cinnamomea (AC) is a treasured Asian medicinal mushroom, which has attracted attention due to recent research on its effectiveness in targeting a variety of serious ailments such as cancer and liver diseases. Among different A. cinnamomea constituents, triterpenoids are regarded as the most therapeutically attractive components because of their anti-inflammatory and cytotoxic activities. In the present study, we proposed a mathematical and statistical extraction protocol to evaluate the concentrations of total ergostane and lanostane triterpenoid derivatives from the ethanolic extract of the wild fruiting bodies of A. cinnamomea (EEAC) by utilizing response surface methodology (RSM) and quantitative NMR (qNMR) approaches. The optimum response surface model showed that the variations of the investigated response variables reached more than 90%, suggesting that the developed model is accurate in explaining response variability. Furthermore, the EEAC major characteristic triterpenoids were quantified through the comparison of the HPLC-tandem MS results with those of the qNMR results. The precision of the used techniques was also evaluated. The experimental design of the EEAC optimum extraction procedure obtained by using RSM and qNMR enabled accurate characterization and quantitation of A. cinnamomea triterpenoids.


Assuntos
Agaricales , Polyporales , Triterpenos , Triterpenos/química , Carpóforos/química , Agaricales/química
16.
PeerJ ; 11: e16288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904843

RESUMO

Lyophyllum decastes is a mushroom that is highly regarded for its culinary and medicinal properties. Its delectable taste and texture make it a popular choice for consumption. To gain a deeper understanding of the molecular mechanisms involved in the development of the fruiting body of L. decastes, we used RNA sequencing to conduct a comparative transcriptome analysis. The analysis encompassed various developmental stages, including the vegetative mycelium, primordial initiation, young fruiting body, medium-size fruiting body, and mature fruiting body stages. A range of 40.1 to 60.6 million clean reads were obtained, and de novo assembly generated 15,451 unigenes with an average length of 1,462.68 bp. Functional annotation of transcriptomes matched 76.84% of the unigenes to known proteins available in at least one database. The gene expression analysis revealed a significant number of differentially expressed genes (DEGs) between each stage. These genes were annotated and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Highly differentially expressed unigenes were also identified, including those that encode extracellular enzymes, transcription factors, and signaling pathways. The accuracy of the RNA-Seq and DEG analyses was validated using quantitative PCR. Enzyme activity analysis experiments demonstrated that the extracellular enzymes exhibited significant differences across different developmental stages. This study provides valuable insights into the molecular mechanisms that underlie the development of the fruiting body in L. decastes.


Assuntos
Agaricales , Ascomicetos , Transcriptoma/genética , Carpóforos/genética , Agaricales/genética , Perfilação da Expressão Gênica , Ascomicetos/genética , Crescimento e Desenvolvimento
17.
Int J Med Mushrooms ; 25(11): 27-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37831510

RESUMO

Mushrooms have two components, the fruiting body, which encompasses the stalk and the cap, and the mycelium, which supports the fruiting body underground. The part of the mushroom most commonly consumed is the fruiting body. Given that it is more time consuming to harvest the fruiting body versus simply the mycelia, we were interested in understanding the difference in metabolite content between the fruiting bodies and mycelia of four widely consumed mushrooms in Taiwan: Agrocybe cylindracea (AC), Coprinus comatus (CC), Hericium erinaceus (HE), and Hypsizygus marmoreus (HM). In total, we identified 54 polar metabolites using 1H NMR spectroscopy that included sugar alcohols, amino acids, organic acids, nucleosides and purine/pyrimidine derivatives, sugars, and others. Generally, the fruiting bodies of AC, CC, and HM contained higher amounts of essential amino acids than their corresponding mycelia. Among fruiting bodies, HE had the lowest essential amino acid content. Trehalose was the predominant carbohydrate in most samples except for the mycelia of AC, in which the major sugar was glucose. The amount of adenosine, uridine, and xanthine in the samples was similar, and was higher in fruiting bodies compared with mycelia, except for HM. The organic acid and sugar alcohol content between fruiting bodies and mycelia did not tend to be different. Although each mushroom had a unique metabolic profile, the metabolic profile of fruiting bodies and mycelia were most similar for CC and HE, suggesting that the mycelia of CC and HE may be good replacements for their corresponding fruiting bodies. Additionally, each mushroom species had a unique polar metabolite fingerprint, which could be utilized to identify adulteration.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Carpóforos/química , Agaricales/química , Basidiomycota/química , Micélio/química , Açúcares/análise , Açúcares/metabolismo
18.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833883

RESUMO

Ribotoxin-like proteins (RL-Ps) are specific ribonucleases found in mushrooms that are able to cleave a single phosphodiester bond located in the sarcin-ricin loop (SRL) of the large rRNA. The cleaved SRL interacts differently with some ribosomal proteins (P-stalk). This action blocks protein synthesis because the damaged ribosomes are unable to interact with elongation factors. Here, the amino acid sequences of eryngitin 3 and 4, RL-Ps isolated from Pleurotus eryngii fruiting bodies, were determined to (i) obtain structural information on this specific ribonuclease family from edible mushrooms and (ii) explore the structural determinants which justify their different biological and antipathogenic activities. Indeed, eryngitin 3 exhibited higher toxicity with respect to eryngitin 4 against tumoral cell lines and model fungi. Structurally, eryngitin 3 and 4 consist of 132 amino acids, most of them identical and exhibiting a single free cysteinyl residue. The amino acidic differences between the two toxins are (i) an additional phenylalanyl residue at the N-terminus of eryngitin 3, not retrieved in eryngitin 4, and (ii) an additional arginyl residue at the C-terminus of eryngitin 4, not retrieved in eryngitin 3. The 3D models of eryngitins show slight differences at the N- and C-terminal regions. In particular, the positive electrostatic surface at the C-terminal of eryngitin 4 is due to the additional arginyl residue not retrieved in eryngitin 3. This additional positive charge could interfere with the binding to the SRL (substrate) or with some ribosomal proteins (P-stalk structure) during substrate recognition.


Assuntos
Agaricales , Ascomicetos , Pleurotus , Ricina , Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Pleurotus/metabolismo , Ribonucleases/química , Agaricales/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/análise , Ricina/metabolismo , Ascomicetos/metabolismo , Carpóforos/química
19.
Sci Rep ; 13(1): 17669, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848482

RESUMO

Cultivation of Cordyceps militaris, a valuable medicinal and edible fungus, has dramatically increased in Vietnam since 2010. During industrial production, parasitic white molds were found to infect the mycelia and fruiting bodies of C. militaris causing significant quality and yield losses. Two different fungal strains were obtained from the mycelia and fruiting bodies of C. militaris in Danang mushroom farms and were characterized by morphological and multiple DNA markers analysis. The sequence alignment of ITS, LSU and rpb2 markers revealed that the pathogens are related to the type species Lecanicillium coprophilum and Calcarisporium cordycipiticola with more than 99% sequence identities. The growth characteristics and pathogenic activities of the two isolated species on their host C. militaris were also investigated. The phylogenetic analysis based on the ITS sequences showed that L. coprophilum WF2611 is closer to its host C. militaris than C. cordycipiticola NT1504. To our knowledge, this is the first worldwide report of C. militaris infected by L. coprophilum which would be an useful information on prevention and control of the disease and be helpful for the industrial cultivation of C. militaris.


Assuntos
Cordyceps , Carpóforos , Cordyceps/genética , Filogenia , Vietnã
20.
BMC Microbiol ; 23(1): 293, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845623

RESUMO

BACKGROUND: A high concentration of CO2 will stagnate the development of the newly formed primordia of Hypsizygus marmoreus, hinder the development of the mushroom cap, thereby inhibiting the normal differentiation of the fruiting body. Moreover, in the previous experiment, our research group obtained the mutant strain HY68 of H. marmoreus, which can maintain normal fruiting under the condition of high concentration of CO2. Our study aimed to evaluate the CO2 tolerance ability of the mutant strain HY68, in comparison with the starting strain HY61 and the control strain HY62. We analyzed the mycelial growth of these strains under various conditions, including different temperatures, pH levels, carbon sources, and nitrogen sources, and measured the activity of the cellulose enzyme. Additionally, we identified and predicted ß-glucosidase-related genes in HY68 and analyzed their gene and protein structures. RESULTS: Our results indicate that HY68 showed superior CO2 tolerance compared to the other strains tested, with an optimal growth temperature of 25 °C and pH of 7, and maltose and beef paste as the ideal carbon and nitrogen sources, respectively. Enzyme activity assays revealed a positive correlation between ß-glucosidase activity and CO2 tolerance, with Gene14147 identified as the most closely related gene to this activity. Inbred strains of HY68 showed trait segregation for CO2 tolerance. CONCLUSIONS: Both HY68 and its self-bred offspring could tolerate CO2 stress. The fruiting period of the strains resistant to CO2 stress was shorter than that of the strains not tolerant to CO2 stress. The activity of ß-GC and the ability to tolerate CO2 were more closely related to the growth efficiency of fruiting bodies. This study lays the foundation for understanding how CO2 regulates the growth of edible fungi, which is conducive to the innovation of edible fungus breeding methods. The application of the new strain HY68 is beneficial to the research of energy-saving production in factory cultivation.


Assuntos
Agaricales , Ascomicetos , Celulases , Animais , Bovinos , Carpóforos , Dióxido de Carbono/metabolismo , Melhoramento Vegetal , Nitrogênio/metabolismo , Carbono/metabolismo , Celulases/análise , Celulases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...